Laser-Plasma Accelerators: A Status Report
نویسنده
چکیده
In this paper, the status of the Laser-Plasma Accelerator field within the Advanced Accelerator Concepts area of research is reviewed. In particular, I review the status of the Plasma Beat Wave Acceleration (PBWA) scheme, the SelfModulated, Laser-Wake Field Acceleration (SMLWFA) scheme and the Laser-Wake Field Acceleration (LWFA) scheme. In all these three schemes, charged particles are accelerated by a relativistic (phase velocity ~ c), space-charge wave excited in a plasma by a photon beam. The wave potential becomes large enough to trap either the background plasma electrons, in a process known as self-trapping, or electrons (positrons) must be externally injected with a certain minimum energy to be trapped and accelerated by this potential. There is a simple scaling law that gives the accelerating electric field of such waves as Ez(V/cm) ~ E(ne) (cm") where E = n/n0 is the density perturbation associated with the wave and ne is the initial unperturbed plasma density. The maximum energy gain limited by dephasing is given by ~ 2yph (MeV) where yph = (co0/(0p) is the relativistic Lorentz factor associated with the phase velocity of the wave, 0)0 is the laser frequency and (Dp is the plasma frequency.
منابع مشابه
LBNL Report, LBNL-53510 Physics of Laser-Driven Plasma-Based Accelerators
The physics of plasma-based accelerators driven by short-pulse lasers is reviewed. This includes the laser wakefield accelerator, the plasma beat wave accelerator, the self-modulated laser wakefield accelerator, and plasma waves driven by multiple laser pulses. The properties of linear and nonlinear plasma waves are discussed, as well as electron acceleration in plasma waves. Methods for inject...
متن کاملDesigning an approprate solenoid and magnetic field for the HZDR laser-driven beamline
Nowadays, due to the high costs and large dimensions of the conventional proton accelerators, other optimal methods for producing the proton beam have been studied. Using of Laser-driven proton accelerators is one of the important and new methods. In laser-driven ion acceleration, a highly ultra-intense laser pulse interacts with solid density targets and will create a plasma media that will ac...
متن کاملLaser-driven electron beam and radiation sources for basic, medical and industrial sciences
To date active research on laser-driven plasma-based accelerators have achieved great progress on production of high-energy, high-quality electron and photon beams in a compact scale. Such laser plasma accelerators have been envisaged bringing a wide range of applications in basic, medical and industrial sciences. Here inheriting the groundbreaker's review article on "Laser Acceleration and its...
متن کاملDevelopments of electron and proton acceleration using Laser-plasma Interaction
With the development in ultra-short, ultra-intense laser technology, the potential of inventing novel table-size charged particle accelerators using laser-plasma interaction has attracted a lot of attentions due to its advantages comparing to classical accelerators. The accelerators have broad application aspects, such as medical imaging, cancer therapy, fast ignition in inertial fusion, and pr...
متن کاملLaser wakefield accelerator based light sources: potential applications and requirements
In this article we review the prospects of laser wakefield accelerators as next generation light sources for applications. This work arose as a result of discussions held at the 2013 Laser Plasma Accelerators Workshop. X-ray phase contrast imaging, x-ray absorption spectroscopy, and nuclear resonance fluorescence are highlighted as potential applications for laser–plasma based light sources. We...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007